Prolonged vasoconstriction of resistance arteries involves vascular smooth muscle actin polymerization leading to inward remodelling.
نویسندگان
چکیده
AIMS Inward remodelling of the resistance vasculature is predictive of hypertension and life-threatening cardiovascular events. We hypothesize that the contractile mechanisms responsible for maintaining a reduced diameter over time in response to prolonged stimulation with vasoconstrictor agonists are in part responsible for the initial stages of the remodelling process. Here we investigated the role of vascular smooth muscle (VSM) actin polymerization on agonist-induced vasoconstriction and development of inward remodelling. METHODS AND RESULTS Experiments were conducted in Sprague-Dawley rat resistance vessels isolated from the cremaster and mesentery. Within blood vessels, actin dynamics of VSM were monitored by confocal microscopy after introduction of fluorescent actin monomers through electroporation and by differential centrifugation to probe globular (G) and filamentous (F) actin content. Results indicated that 4 h of agonist-dependent vasoconstriction induced inward remodelling and caused significant actin polymerization, elevating the F-/total-actin ratio. Inhibition of actin polymerization prevented vessels from maintaining prolonged vasoconstriction and developing inward remodelling. Activation of the small GTPases Rho/Rac/Cdc42 also increased the F-/total-actin ratio and induced inward remodelling, while inhibition of Rho kinase or Rac-1 prevented inward remodelling. Disruption of the actin cytoskeleton reversed the inward remodelling caused by prolonged vasoconstriction, but did not affect the passive diameter of freshly isolated vessels. CONCLUSION These results indicate that vasoconstriction-induced inward remodelling is in part caused by the polymerization of actin within VSM cells through activation of small GTPases.
منابع مشابه
I-6: Remodelling Uterine Spiral Arteries inPregnancy
Background: During the first trimester of pregnancy the uterine spiral arteries that supply blood to the placenta are remodelled, creating heavily dilated conduits lacking maternal vasomotor control. To effect permanent vasodilatation, the internal elastic lamina and medial elastic fibres must be degraded. Failure of remodelling is a key characteristic of the pathological placenta and is though...
متن کاملEffects of chronic portal hypertension on agonist-induced actin polymerization in small mesenteric arteries.
The ability of arterial smooth muscle to respond to vasoconstrictor stimuli is reduced in chronic portal hypertension (PHT). Additional evidence supports the existence of a postreceptor defect in vascular smooth muscle excitation contraction coupling. However, the nature of this defect is unclear. Recent studies have shown that vasoconstrictor stimuli induce actin polymerization in smooth muscl...
متن کاملThe obligatory role of the actin cytoskeleton on inward remodeling induced by dithiothreitol activation of endogenous transglutaminase in isolated arterioles.
Inward remodeling is the most prevalent structural change found in the resistance arteries and arterioles of hypertensive individuals. Separate studies have shown that the inward remodeling process requires transglutaminase activation and the polymerization of actin. Therefore, we hypothesize that inward remodeling induced via endogenous transglutaminase activation requires and depends on actin...
متن کاملLength adaptation of smooth muscle contractile filaments in response to sustained activation.
Airway and bladder smooth muscles are known to undergo length adaptation under sustained contraction. This adaptation process entails a remodelling of the intracellular actin and myosin filaments which shifts the peak of the active force-length curve towards the current length. Smooth muscles are therefore able to generate the maximum force over a wide range of lengths. In contrast, length adap...
متن کاملMyosin phosphorylation triggers actin polymerization in vascular smooth muscle.
A variety of contractile stimuli increases actin polymerization, which is essential for smooth muscle contraction. However, the mechanism(s) of actin polymerization associated with smooth muscle contraction is not fully understood. We tested the hypothesis that phosphorylated myosin triggers actin polymerization. The present study was conducted in isolated intact or beta-escin-permeabilized rat...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Cardiovascular research
دوره 98 3 شماره
صفحات -
تاریخ انتشار 2013